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Abstract: The hyperstability theory of adaptive control systems is extended to encompass plants with unmodelled
dynamics and disturbances. The analysis not only shows that leakage in the adaptive law is a natural way to avoid
robustness problems (which is a known result in adaptive control theory), but also provides a new adaptive law
that is a sort of signal-dependent s-modification. The proposed adaptive law is less conservative than the
s-modification, but still ensures the global stability of the system, which is formally proven in the paper. Since
it is shown that the design parameter s′ of the proposed adaptive law is directly related to the H1 norm of
the parasitic dynamics, the criteria for system stability are derived. Based on these, some guidelines for
choosing the leakage parameter s′ and the bandwidth of the reference model are presented.
i

1 Introduction
At the end of the 1970s much effort was put into proving the
stability of adaptive algorithms. Several stability proofs were
derived showing the stability of the adaptive system based on
certain assumptions (knowledge of the plant order, no
disturbances, noises etc.). It was shown that a relatively
slight violation of these assumptions can result in system
instability [1]. In the 1980s there was a lot of work on
robust adaptive control in order to try to minimise the
negative influence of parasitics and disturbances in the
system [2]. One of the best known approaches to robust
adaptive control is the use of leakage in the adaptive law.
Well-known types of leakage are s-modification [3]
e1-modification [4], switching s-modification [5] etc. The
general idea of the leakage is developed further in [6], where
the leakage parameter switches to some signal-dependent
term when the estimates are far from the a priori guess, and
in [7], where a so-called ‘circular-leaky’ algorithm is
introduced. Another possibility for preventing parameter
bias is the use of directional leakage [8], where the leakage is
applied only in the directions in parameter space in which
the exciting signal is not informative. Leakage is sometimes
also referred to as soft projection. Similar results can be
obtained by the use of parameter projection [9].

To prove the stability of the classical adaptive systems
several mathematical tools were used such as Lyapunov
functions and Popov hyperstability theory [10]. In this
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paper the latter will be extended to the case where there are
parasitics and disturbances present in the system. The
analysis will show the very well-known fact that the
inclusion of leakage into the adaptive law is a natural way
to stabilise the system in the presence of parasitics. This
analysis will also lead to a new adaptive law with leakage,
which is similar to the s-modification but less conservative
and more robust to different amplitudes of the signals in
the system. A very important property of the proposed
adaptive law is that the leakage parameter is not dependent
on any signals present in the system.

One of the main drawbacks of adaptive control algorithms
is the lack of guidelines for choosing the design parameters in
such systems. Some issues on tuning the s parameter have
been discussed by [11], especially those that influence the
onset of bursting. Another route was taken by [12]; they
proposed an algorithm for adjusting the s parameter on
line, based on the a posteriori errors obtained using the
algorithm with and without leakage. One of the important
results of the analysis carried out in this paper is the fact
that some criteria on ensuring the stability of the system
in the presence of parasitic dynamics will be obtained.
Consequently, some guidelines on choosing the design
parameters in direct model reference adaptive control
(MRAC) systems will be obtained.

In Section 2 some preliminaries are given. In Section 3
MRAC systems with parasitics are analysed. Section 4
1533
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introduces novel adaptive law whereas some guidelines for
choosing design parameters are given in Section 5. The
conclusions are stated in Section 6.

2 Problem formulation
The goal of this paper is to adaptively control the unknown
minimum phase plant of arbitrary order (n∗) and arbitrary
relative degree (n∗ − m∗)

yp =
B∗(s)

A∗(s)
(u + du) = k∗

∏m∗

i=1 (s − z∗i )∏n∗
i=1 (s − p∗

i )
(u + du) (1)

where u is the control input and yp is the controlled output.
Since the plant is linear and minimum phase, all the bounded
disturbances in the plant can be replaced by one bounded
disturbance at the plant input – denoted by du. The poles p∗

i

and the zeros z∗i are indexed in ascending order of the
absolute value. The polynomials A(s) and B(s) are defined as

A(s) =
∏n

i=1

(s − p∗
i ) = sn + a1sn−1 + · · · + an (2)

B(s) = k
∏m

i=1

(s − z∗i ) = b0sm + b1sm−1 + · · · + bm (3)

where k is selected to meet the zero-frequency condition

lim
s�0

B(s)

A(s)
= lim

s�0

B∗(s)

A∗(s)
(4)

The transfer function B(s)/A(s) therefore represents the low-
frequency approximation of B∗(s)/A∗(s). The remaining poles
and zeros from B∗(s)/A∗(s) are included in D(s) so that the
following holds

B(s)

A(s)
(1 + D(s)) = B∗(s)

A∗(s)
(5)

The transfer function D(s) is therefore the parasitic (or
unmodelled) dynamics of the plant in multiplicative form.
Owing (4) and (5) it holds

D(s)|s=0 = 0 (6)

Remark 1: Note that the meaning of parasitic dynamics in
adaptive control is slightly different from that in robust linear
control. In the adaptive case the plant is unknown, and only
the plant structure (the parameters n and m) has to be known
in advance to derive the appropriate control algorithm.
Consequently, the plant dynamics can be divided in an
arbitrary manner among the nominal plant model B(s)/A(s)
and the parasitic dynamics. In our case, the plant model is
the best approximation (based on the above criterion) of
the plant in the low-frequency region.
34
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Remark 2: No special requirements about the poles or the
zeros are needed. This means that they can lie anywhere in
the complex plane (higher multiplicities are also allowed) as
long as all the zeros lie in the open left-hand-side half-
plane. It is even possible to select a nominal plant order
higher than the actual one (n . n∗). In such a case the
controller that achieves the perfect tracking is not
characterised by a single point in the control parameter
space but with a set of points.

The desired behaviour of the closed-loop system is defined
by a reference model

ym = Gm(s)w = Bm(s)

Am(s)
w = bm0smm + · · · + bmm

snm + · · · + amn

w (7)

where w represents the reference.

If the plant parameters are unknown and there are no
disturbances and no parasitic dynamics (the plant transfer
function is B(s)/A(s)), the problem can be solved by direct
MRAC. The following control law is used

u = cTû (8)

where

cT =
aT(s)

L(s)
u

aT(s)

L(s)
yp yp w

[ ]
[ R2n, n ≥ 2

[yp w] [ R2, n = 1

⎧⎪⎨
⎪⎩

aT(s) = sn−2 sn−3 . . . s 1
[ ]

(9)

and L(s) is an arbitrary monic Hurwitz polynomial of degree
n 2 1 that includes the numerator polynomial of the
reference model as a factor. The control parameter vector û
is obtained with the adaptive law. The parameter error ũ is
defined as

ũ = û − u (10)

where u is the true control parameter of the tuned system

uT = uT
1 uT

2 u3 u4

[ ]
, u1, u2 [ Rn−1 (11)

Obviously, the parameter vector u has only two elements (u3

and u4) if n ¼ 1. Therefore uT
1 a(s) and uT

2 a(s) can be
interpreted as 0 in all the equations that follow for the case
of the first-order nominal plant.

If the control law of the tuned system (with the adaptation
switched off) is interpreted as a pole placement control law,
the feedback controller can be obtained

u

−yp

= −(uT
2 a(s) + u3L(s))

L(s) − uT
1 a(s)

(12)
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doi: 10.1049/iet-cta.2009.0349



IET
doi

www.ietdl.org
The numerator and the denominator of the above feedback
control are denoted by Q(s) and P (s), respectively

Q(s) = −(uT
2 a(s) + u3L(s))

P(s) = L(s) − uT
1 a(s)

(13)

In the case of pole placement control, the Bezout identity is
obtained, which in the case of model reference control where
the plant zeros are cancelled becomes [13]

AmO = b0Q + P ′A (14)

where P ′ is the controller denominator polynomial after
cancelling the plant zeros (P = P ′(B/b0)) and O is
interpreted as the observer polynomial whose roots are the
roots of L(s) that are not included in Bm(s)

Bm(s)O(s) = bm0L(s) (15)

Since the direct adaptive approach is adopted here, the
controllability problem is not an issue [14]. The problem
arises if parasitic dynamics and disturbances are present in
the system. The question is: What adaptive law should be
used in combination with control law (8) in order to
control the plant in a robust way?

3 Error model of the adaptive
system
It is fairly easy to obtain the following equation that occurs
often in classical adaptive literature [13]

1 = yp − ym = b0

bm0

Gm(s)[cTũ] (16)

This equation is the error model of the system. If parasitic
dynamics and disturbances are present in the plant, similar
error model can be obtained after some calculation

1 = b0

bm0

Gm

︷

︸︸

︷H 0
1

1 + D

1 + D(b0Q/AmO)

︷













︸︸













︷H 0
1

(cTũ)

+ P ′AD

AmO+ b0QD
ym + b0

bm0

Gm

1 + D

1 + D(b0Q/AmO)
du

︷




























︸︸




























︷de

(17)

where H1(s) is the transfer function 1/(cTũ) and H 0
1 (s)

denotes the nominal part of this transfer function (that can
be seen in (16)), and de is the equivalent disturbance that
combines the contributions of all external signals. More
compact version of the error model is

1 = H1(s)(c
Tũ) + de (18)
Control Theory Appl., 2010, Vol. 4, Iss. 9, pp. 1533–1542
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The error model described by (17) or (18) will be analysed.
It will be particularly important if the transfer function
H1(s) is strictly positive real (SPR) [15]. The latter
demand in the nominal case requires that Gm(s) in (16) is
SPR. That would limit the use of direct MRAC to
plants with relative degree 1. Many adaptive schemes
were designed in the late 1970s that overcome this
problem and modify the design so that H 0

1 (s) is SPR
even if Gm(s) is not. We assume that H 0

1 (s) is indeed
SPR and that the direct MRAC applied on the plant
without parasitics would result in globally stable system.
Our question is: How do parasitic dynamics affect the
SPR property of the error model and consequently
stability of the system?

The poles of all transfer functions on the right-hand side
of (17) are the same – they are equal to the closed-loop
poles of the tuned system, but with unmodelled dynamics
taken into account. Hence, the closed-loop poles are not
exactly the same as the desired ones. If there exists the
controller parametrisation u that stabilises the whole class
of plants (1) where D(s) in (5) is bounded in some way,
then all transfer functions on the right-hand side of (17)
are stable.

In the following the difference between the transfer
functions H1(s) and H 0

1 (s) from (17) will be analysed. It
will be denoted as H̃

a

1(s)

H̃
a

1 = H1 − H 0
1 = H 0

1

1 + D

1 + D(b0Q/AmO)
− H 0

1

= H 0
1

D− D(b0Q/AmO)

1 + D(b0Q/AmO)
= H 0

1

P ′A

AmO+ Db0Q
D (19)

where (14) is also taken into account. Our task is to show the
contribution of H̃

a

1 to the violation of the SPR property, that
is, we will try to estimate infv<{H̃

a

1(jv)} where <{ · }
denotes the real part of a complex number. In order to do
so, the frequency characteristics of the function in (19) will
be analysed next.

Frequency response of D(s). It has already been discussed
that (1 + D) only includes high-frequency dynamics of the
plant. Define vpar as the frequency of the dominant pole or
zero in D(s). Taking into account (6), the following can be
concluded

|D( jv)||v≪vpar
≪ 1 (20)

It is very well known that it is much easier to construct
adaptive controller when the relative degree (the difference
between the number of poles and zeros) is small. This is
why in all practical cases of designing an adaptive controller
there are more poles in (1 + D(s)) than there are zeros, or
at least their number is equal. Consequently, the frequency
response |D(jv)| � K , 1 as v � 1. Merging the
low-frequency and the high-frequency characteristics, D(s)
1535
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has similar frequency response like the high-pass filter with
the cut-off frequency vpar.

Frequency response of P ′A/(AmO+ Db0Q). This transfer
function can be rewritten as follows

P ′A

AmO+ Db0Q

= P ′A

P ′A + b0Q + Db0Q
= 1

1 + (b0Q/P ′A)(1 + D)

= 1

1 + (Q/P)(B/A)(1 + D)
= S (21)

Equation (21) gives (output) sensitivity function S(s) of the
closed-loop system with plant (B/A)(1 + D) and controller
Q(s)/P (s) where the latter was obtained based on the
nominal plant model. The sensitivity function S(s)
approaches 1 at high frequencies (cut-off frequency is near
the Gm bandwidth vref ).

Frequency response of H 0
1 . It can easily be shown that this

transfer function is equal to the following

H 0
1 (s) = T0(s) = 1 − S(s)|D(s)=0 (22)

where T0(s) is the inverse sensitivity function of the system
under the assumption that the plant is without parasitics
and the controller is also the nominal one Q(s)/P (s). As
such, H 0

1 (s) acts as a low-pas filter with cut-off frequency
near vref .

By introducing (21) and (22) into (19) we obtain

H̃
a

1(s) = T0(s)S(s)D(s) (23)

The analysis in this section has shown that T0(s) (low-pass
filter with cut-off frequency near vref ) significantly defines
the behaviour of H̃

a

1(s) at high frequencies whereas D(s)
(high-pass filter with cut-off frequency near vpar) is the
most important for the behaviour at low frequencies. Based
on the relation between the two cut-off frequencies, two
possible approximations of |H̃ a

1(jv)| are shown in Fig. 1.
6
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Note that the gain in the flat area of the frequency
response in Fig. 1b is around 1 (0 dB).

If the poles play the dominant role in the parasitic
dynamics (which is the usual case), the majority of the
polar diagram of the H̃

a

1(jv) resides in the left-hand side
half-plane. We are particularly interested in the point that
is the farthest to the left in the polar diagram. This usually
happens around phase shift of 21808, which nearly
coincides with the point that is the farthest from the origin
of the complex plane

inf
v
<{H̃

a

1( jv)} ≃ − sup
v

|H̃ a

1( jv)| (24)

4 Development of the adaptive
law
If the very-well-known gradient adaptive law [2]

˙̂
u = ˙̃

u = −Gc1 (25)

with G = G
T

. 0 being the adaptive gain is used the scheme
of the adaptive system with the derived error model (18) can
be constructed. The scheme is shown in Fig. 2a.

Many proofs of adaptive system stability in the 1970s
relied on the Popov hyperstability theory. A very important
result states [16]: ‘If the system H1 in Fig. 3 is positive real
(PR), H2 is SPR and u1(t) [ L2, then y1(t) [ L2’. It is
very well known [2, 13, 10] that the feedback operator in
Fig. 2a (owing to the adaptive law) is PR. The corollary
gives sufficient conditions for the so-called L2-stability,
that is, H 0

1 + H̃
a

1 has to be SPR and de(t) [ L2. Since H 0
1

is always SPR by adaptive law construction, we are only
interested in the properties of H̃

a

1. The latter is in general
not SPR, as shown in the previous section. It is known
that the adaptive system can become unstable if the SPR
property is violated [1].

The main idea of our approach is to add a new constant
block parallel to H̃

a

1, thus improving the stability properties
of the overall system, as will be shown later. A new block
Figure 1 Approximate frequency response of |H̃1
a( jv))|

a vpar . vref

b vref . vpar
IET Control Theory Appl., 2010, Vol. 4, Iss. 9, pp. 1533–1542
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Figure 2 Scheme of the adaptive system

a Original
b Modified
(dotted) is added to the system, as shown in Fig. 2b. The
direct operator in Fig. 2b (H 0

1 ) is SPR. The feedback
operator is again a feedback connection of two systems.
Another result from the Popov hyperstability theory states
[16]: ‘If the systems H1 and H2 in Fig. 3 are both PR, the
system with input u1 and output y1 is also PR’. The
feedback operator in Fig. 2b is therefore PR if H̃

a

1 + s′ is
PR, which is achieved by properly selecting the design
parameter s′ to meet the following condition

<{H̃
a

1( jv)} ≥−s′, ∀v [ R (26)

Finally, the system in Fig. 2b is hyperstable if the system in
feedback is PR (this is true if condition 26 is satisfied) and
de [ L2. The latter demand means that only disturbances
of the finite energy are allowed. This is a very unrealistic
requirement, and it will be shown in the following how to
circumvent it.

By including s′ into the scheme of the adaptive system in
Fig. 2b, the adaptive law has been modified as follows

˙̂
u = ˙̃u = Gc(−1− s′cTũ) = −Gc1− Gs′ccTũ (27)

The obvious problem of the adaptive law given by (27) is that
it is not realisable as an adaptive law since it contains the

Figure 3 Feedback connection used for the stability analysis
within the Popov hyperstability theory
Control Theory Appl., 2010, Vol. 4, Iss. 9, pp. 1533–1542
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unknown ũ = û − u. But we can use any possible a priori
estimate for u, which will be denoted u∗ (even 0 if there is
no information available) to produce the following
adaptive law

˙̂
u = −Gc1− Gs′ccT(û − u∗) (28)

It can be seen that the adaptive law (28) uses leakage.
The leakage parameter is s′ccT [ R2n. Such a leakage
term only acts in the direction of the regressor vector c and
is not successful in preventing parameter drift in other
directions of the parameter space. This ascertainment is
linked to the demand that the disturbance has to be of
finite energy to ensure global stability. To overcome this
problem, ccT is substituted by its trace cTc [ R in the
adaptive law, and the leakage will act in all dimensions of
the parameter space

˙̂
u = −Gc1− Gs′cTc(û − u∗) (29)

Theorem 1: Applying the control law given by (8) and the
adaptive law given by (29) to the plant given by (1) results in a
stable system (in the sense that all the signals in the system are
bounded) provided that the following conditions have been
met:

† the parasitic dynamics described by D(s) in (5) are
bounded so that the roots of

AmO+ b0QD = P ′A + b0Q + Db0Q = 0 (30)

lie in the left-hand-side half-plane, where Q(s) and
P(s) = P ′(s)(B(s)/b0) are the linear controller numerator
and denominator polynomials, respectively, that enable
perfect tracking when D(s) ¼ 0 and du = 0,
1537
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† the parameter of the adaptive law s′ satisfies

s′ . − inf
v[R
<{H̃

a

1( jv)} (31)

where H̃
a

1 is defined in (19),

† the equivalent disturbance de defined in (17) is bounded,

† there exists t0 ≥ 0, such that for each t ≥ t0 the following
inequality is satisfied

|ũ(t)| ≥ |de(t)|
(s′ − s′)|c(t)| +

s′|u− u∗|
s′ − s′ (32)

where

s′ = − inf
v[R
<{H̃

a

1( jv)} , s′ (33)

Proof: The error model given by (18) can be decomposed
into three parts based on (19)

1 = H 0
1 (cTũ)︸


︷︷


︸
10

+ H̃
a

1(cTũ)︸


︷︷


︸
1a

+de (34)

As discussed in Section 3, the two transfer functions H 0
1 (s)

and H̃
a

1(s) have zero-gain at high frequencies, and are
therefore strictly proper. Their minimum state-space
realisations are

ẋ0 = A0x0 + b0c
Tũ

10 = cT
0 x0

(35)

and

ẋa = Aaxa + bac
Tũ

1a = cT
a xa

(36)

The systems described by (35) and (36) are stable, as revealed
in Section 3. The system (35) is also SPR, whereas the system
(36) is not in general positive real. But owing to (33), the
system (H̃

a

1 + s′) is PR and can be rewritten in the state-
space form as

ẋa = Aaxa + bac
Tũ

1a + s′cTũ = cT
a xa + s′cTũ

(37)

Applying Kalman–Yakubovich lemma on the SPR system
(35) and the PR system (37) leads to the following result:
For any L0 = LT

0 . 0 there exist a scalar n0 . 0, matrices
P0 = PT

0 . 0 and Pa = PT
a . 0, and vectors q0 and qa

such that

AT
0 P0 + P0A0 = −q0qT

0 − n0L0

P0b0 = c0

(38)
38
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and

AT
a Pa + PaAa = −qaqT

a

Paba − ca = +qa

����
2s′

√ (39)

The following Lyapunov function is proposed for the stability
analysis

V = xT
0 P0x0 + xT

a Paxa + ũ
T
G−1ũ (40)

Its derivative with respect to time can be calculated taking
into account (35), (37) and (29)

V̇ = xT
0 AT

0 P0x0 + xT
0 P0A0x0 + 2xT

0 P0b0c
Tũ

+ xT
a AT

a Paxa + xT
a PaAaxa + 2xT

a Pabac
Tũ

+ 2ũ
T
G−1(−Gc1− Gs′cTc(û − u∗)) (41)

The error 1 can be rewritten based on (34), (35) and (36)

1 = 10 + 1a + de = cT
0 x0 + cT

a xa + de (42)

Introducing (38), (39), (42) and (10) into (41) and cancelling
the equal terms yields

V̇ = −(xT
0 q0)2 − n0xT

0 L0x0 − (xT
a qa)2 + 2xT

a qa

����
2s′

√
cTũ

− 2cTũde − 2s′cTcũ
T
ũ− 2s′cTcũ

T
(u− u∗) (43)

Applying Cauchy’s inequality on the sixth term on the right-
hand side of (43) give

V̇ ≤ −(xT
0 q0)2 − n0xT

0 L0x0

− (xT
a qa)2 + 2(xT

a qa)
����
2s′

√
(cTũ) + 2s′(cTũ)2

( )
− 2(s′ − s′)|c|2|ũ|2 − 2cTũde − 2s′cTcũ

T
(u− u∗)

= −(xT
0 q0)2 − n0xT

0 L0x0

− (xT
a qa) +

���
2s

√
(c′ũ)

( )2

−2(s′ − s′)|c|2|ũ|2

− 2cTũde − 2s′cTcũ
T

(u− u∗) (44)

The first three terms on the right-hand side of (44) are always
negative semi-definite, the fourth term is also negative semi-
definite and has to make the derivative of the Lyapunov
function negative semi-definite. The only critical terms in
(44) are the last two terms. Applying Cauchy’s inequality to
them results in

V̇ ≤ −2(s′ − s′)|c|2|ũ|2 + 2|c||ũ||de| + 2s′|c|2|ũ||u− u∗|

= −2(s′ − s′)|c|2|ũ| |ũ| − |de|
(s′ − s′)|c| −

s′|u− u∗|
s′ − s′

( )
(45)
IET Control Theory Appl., 2010, Vol. 4, Iss. 9, pp. 1533–1542
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If there exists t0 ≥ 0 such that the condition given by
inequality (32) is satisfied for each t ≥ t0, then
V (t) ≤ V (t0) for each t ≥ t0 owing to (45). Consequently,
it follows from (40) that the signals x0, xa and ũ are
bounded. The error 1 is then also bounded (see (42) and
the assumption on bounded de). The plant output is also
bounded (yp = ym + 1) and due to the minimum-phase
plant, the same is true for the plant input u. A

Remark 3: The proposed adaptive law (29) is similar to the
adaptive law with the s-modification

˙̂
u = −Gc1− Gs(û − u∗) (46)

The proposed approach has certain advantages. When the
excitation is no longer present (c ¼ 0), the adaptation
stops completely, whereas in the case of adaptive law (46)
only the leakage term is active – moving û towards u∗, which
results in ‘forgetting’ of the current estimates.

Remark 4: It is very well known that the adaptive law with
the s-modification in the form of (46) produces very
inaccurate results if the amplitudes of the signals change
drastically. One of the main reasons for this is that the
ratio between the nominal adaptation and the leakage also
changes drastically. If the signals (this includes c and 1)
change by a factor of b, then the first term in (46) changes
by a factor of b2, whereas the second term remains the
same. In the case of the proposed adaptive law (29), both
terms change by a factor of b2, keeping the ratio constant.
Most of the existing adaptive laws involving leakage do not
share this property, for example, in the e1-modification [4]
the leakage term changes by a factor of b, the switching
s-modification [5] is equivalent to the s-modification
when leakage is activated. The exception is the adaptive law
[6]. It has been known for a long time that using (static or
dynamic) normalisation overcomes this problem.

The interesting fact about the proposed adaptive law
without normalisation (29) is that not only is the stability
of the system achieved at different amplitudes of the
signals, but also the dynamic properties do not change
much. This is due to a very subtle mechanism introduced
through a signal-dependent leakage term (c is present in
the leakage). One could say that in a sense the proposed
adaptive law (29) combines the advantages of the adaptive
law with the s-modification with and without normalisation.

Remark 5: If at some point in time c(t) becomes 0,
condition (31) also becomes impossible to satisfy. The
problem lies in the nature of the adaptive law in
the vicinity of c ¼ 0. Note that the ‘classical term’ in the
adaptive law (29) is linearly dependent on c, whereas
the ‘leakage term’ is quadratically dependent on c and
vanishes compared to the ‘classical term’ when c is very
small. So, effectively the leakage is turned off when small
signals are driving the adaptation. When c is exactly 0, the
adaptation is also switched off and no problems are
Control Theory Appl., 2010, Vol. 4, Iss. 9, pp. 1533–1542
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encountered. To overcome the above-mentioned problems,
an extra linear term is added to the leakage, which is
treated in the next theorem (Theorem 2).

Remark 6: The feature that makes the fourth condition of
Theorem 1 even more problematic is that it is practically
almost impossible to fulfil it. The parameter error is almost
never high from some time to infinity. Rather, it is high for
a shorter period, which is often referred to as a burst
(bursting phenomena are quite common in many adaptive
schemes). During that time, the derivative of Lyapunov
function is negative and the system is ‘stabilised’ during
that time. Excitation is high during a burst and the
parameter error decreases. Owing to parasitic dynamics and
disturbances parameter error may increase again and
another burst may occur after a period of time. Note that
all signals are still bounded during bursts and that bursting
phenomenon occurs quite rarely or even not at all. Note
also that the inclusion of the proposed leakage causes that
the system is not able to perform perfect tracking even in
the case of the absence of disturbances and parasitic
dynamics. This is a common property of leakage-based
adaptive laws.

Theorem 2: The next adaptive law is proposed

˙̂
u = −Gc1− G(s′cTc+ s′

2|c|)(û − u∗) (47)

It again results in a stable system where the last condition
from Theorem 1 is replaced by

† there exists t0 ≥ 0 such that for each t ≥ t0 the following
inequality is satisfied

|ũ(t)| ≥ max
|de(t)|
s′

2

+ |u− u∗|, s′|u− u∗|
s′ − s′

{ }
(48)

Proof: The proof of the theorem follows the same lines as
the proof of Theorem 1. The only difference between the
two adaptive laws is the extra term (−Gs′

2|c|(û − u∗)) used
in Theorem 2. The same Lyapunov function is used. Its
derivative is different from the one shown in (43). Namely,

two terms are added: −2s′
2|c|ũ

T
ũ− 2s′

2|c|ũ
T

(u− u∗).
These two terms are also present in inequalities analogous
to (44) and (45). The latter has the following form

V̇ ≤ −2(s′ − s′)|c|2|ũ|2 + 2|c||ũ||de| + 2s′|c|2|ũ||u− u∗|

− 2s′
2|c||ũ|2 + 2s′

2|c||ũ||u− u∗|

= −2(s′ − s′)|c|2|ũ| |ũ| − s′|u− u∗|
s′ − s′

( )

− 2s′
2|c||ũ| |ũ| − |de|

s′
2

− |u− u∗|
( )

(49)

If inequality (48) is satisfied for each t ≥ t0, then both
expressions in parentheses in (49) are positive for t ≥ t0.
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Consequently, V (t) ≤ V (t0), and the same arguments as in
the proof of Theorem 1 can be stated to prove the
boundedness of all the signals in the system. A

Example 1: Let us take the famous Rohrs’ example [1] with
plant Gp (the nominal part is G0) and reference model Gm

Gp(s) = G0(s)(1 + D(s)) = 2

s + 1
× 229

s2 + 30s + 229

Gm(s) = 3

s + 3
(50)

The plant operates in two environments: the simple
conditions denote the case without disturbance and a
periodic reference signal of pulses of amplitude 1 and the
difficult conditions denote the case with output disturbance
dy = 50 and a periodic reference signal of pulses of
amplitude 100.

Since it is not possible to find control parameters that
would result in an acceptable behaviour of the adaptive law
(46) in both environments, a version with static normalisation

˙̂
u = −G

c

1 + cTc
1− Gs′(û − u∗) (51)

was compared with the proposed adaptive law (29). The same
parameters were used in both cases: G¼ I, s¼ 0.1, s′ = 0.1.

The results of the experiment with the adaptive law (46) in
the simple conditions (Fig. 4a) were similar to the results
with the proposed adaptive law (Fig. 5a). The performance
in the difficult conditions (Fig. 4b), however, is much
worse compared to the one in (Fig. 5b). This is due to the
normalisation – the leakage term, being dominant, drives
the controller parameters towards biased values. This effect
could be reduced by increasing the adaptive gain matrix G,

Figure 4 Performance of the s-modification with static
normalisation

a Simple conditions
b Difficult conditions
0
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which was done in the experiment with G ¼ 10I whose
results are shown in Fig. 6. In this case a much better
performance of the system in the difficult conditions was
achieved (Fig. 6b), whereas the results in the simple
conditions were much worse (Fig. 6a).

5 Guidelines for choosing the
design parameters in direct MRAC
The transfer function H̃

a

1(s) that was analysed in the
preceding sections will play the central role in this section.
Especially important is the frequency response H̃

a

1( jv). It
should not be necessary to emphasise that the supremum of
|H̃ a

1( jv)| should be as low as possible to approach the ideal

Figure 6 Performance of the s-modification with static
normalisation after correcting G

a Simple conditions
b Difficult conditions

Figure 5 Performance of the proposed approach

a Simple conditions
b Difficult conditions
IET Control Theory Appl., 2010, Vol. 4, Iss. 9, pp. 1533–1542
doi: 10.1049/iet-cta.2009.0349



IET
doi

www.ietdl.org
case where H1(s) is SPR. In view of Fig. 1 this can be
achieved by fulfilling the following condition

vpar ≫ vref (52)

that can be interpreted in the following way: Since in the real
systems it is not possible to ensure that H1(s) is SPR, it is
good for the robustness to come close to this requirement.
This is done by selecting a reasonably high bandwidth for
the reference model – in any case lower than the dominant
part in the unmodelled dynamics. This demand is in
accordance with robust linear control and is intuitively clear
– when one wants good performance from the system
(high bandwidth), it is necessary to cope with reduced
robustness.

One of the requirements of Theorems 1 and 2 is that s′

has to satisfy the following inequality

s′ . − inf
v[R
<{H̃

a

1( jv)} (53)

If the design parameter s′ satisfies the following inequality

|H̃ a

1( jv)| , s′, ∀v [ R (54)

then the inequality (53) will definitely be satisfied. The
parameter s′ will not be chosen based on the estimation of
(−infv<{H̃

a

1( jv)}), but rather based on the estimation of
supv |H̃

a

1( jv)|. The estimation based on supv |H̃
a

1( jv)|
provides a higher value for s′, although the two estimates
are similar. The exact values of (−infv<{H̃

a

1( jv)}) and
supv |H̃

a

1( jv)| for the case treated in Example 1 are 0.2361
and 0.2369, respectively.

From inequality (54) it follows that the estimate of ‖H̃
a

1‖1

is needed for the choice of s′. It is obvious that the estimate
of s′ according to inequality (54) is different from the one in
(26), but on the other hand unmodelled dynamics are not
known (even the dominant dynamics are unknown in
adaptive control), and we need a very raw estimation. The
next question is: How is ‖H̃

a

1‖1 related to vpar and vref ?
We have three possibilities:

† vref . vpar: the frequency response of |H̃ a

1(v)| has the
shape as shown in Fig. 1b; the leakage parameter that
fulfils inequality (54) is too large for the system to have
acceptable performance; for these reasons, choosing the
reference model bandwidth so high is not preferable.

† vref ≃ vpar: the frequency response of |H̃ a

1(v)| has the
shape as shown in Fig. 1a with the supremum around
0 dB; s′ should be around 1 so that the inequality (54) is
fulfilled.

† vref , vpar: this is the preferred choice of the reference
model bandwidth that results in a system with acceptable
robustness and performance.
Control Theory Appl., 2010, Vol. 4, Iss. 9, pp. 1533–1542
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When vref , vpar, the graphical analysis of the diagram in
Fig. 1a gives

s′ =
�����
vref

vpar

√
(55)

Since the frequency response is rounded off, the estimate in
(55) is a little conservative and results in a value for s′ that
is too high. Usually, a choice of s′ between 0.1 and 1 is a
good idea. When more robustness is desired, the parameter
is increased, while in the case of a high-performance
demand the value can be decreased especially when the
condition vpar ≫ vref is fulfilled with a high probability.

6 Conclusions
An analysis of the direct MRAC with parasitics has shown
that the hyperstability of the system can be ensured by
adding an extra term to the adaptive law. This term can be
interpreted as the leakage in the adaptive law. The
algorithm is further developed so that the global stability in
the presence of disturbances is proven. The proposed
adaptive law has signal-dependent leakage, and is therefore
also suitable for controlling systems where the amplitudes
of signals change drastically. It has to be pointed out that
this is achieved without using signal normalisation. It is
shown that under some circumstances a version of the
proposed adaptive law is similar to the s-modification with
the static normalisation of signals. For this reason the two
approaches are compared in the sense of how they are able
to control the famous Rohrs’ plant. It turned out that the
proposed approach gives better results, especially in the case
of very high or very low signals in the regressor c.

A great problem in the adaptive control design is the
choice of several design parameters. Since it is shown that
the design parameter s′ of the proposed adaptive law is
directly related to the H1 norm of the parasitic dynamics,
the criteria for system stability are derived. Based on these,
some guidelines for choosing the leakage parameter s′ and
the bandwidth of the reference model are also presented.
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